Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dhiran V. B. Walji, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.104$
Data-to-parameter ratio $=17.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

5-[Bis(cyclopropanecarbonyl)amino]-4,6-dichloropyrimidine containing a short cyclopropyl C-H...O interaction

The title compound, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$, possesses normal intramolecular geometrical parameters. The crystal packing is influenced by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and possible weak $\pi-\pi$ stacking interactions.

Comment

A great deal of research has been carried out on pyrimidine systems, fuelled by their important biological applications and properties (Brown, 1994). Various dihaloaminopyridines and dihaloaminopyrimidines have proven to be useful in terms of their antiviral activity, particularly for their action towards the Herpes virus (Giovanninetti et al., 1980). As part of our general investigations in this area, the title compound, (I), $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$, has been synthesized, albeit in moderate yield. Similarly low yields have also been observed by Giovanninetti et al. (1980) in acylation reactions of dichloroaminopyrimidines.

(I)

Compound (I) possesses normal intramolecular geometrical parameters (Table 1). The 4,6-dichloropyrimidine moiety (C1$\mathrm{C} 4 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{Cl} 1 / \mathrm{Cl} 2$) is close to being planar; for the non- H atoms, the r.m.s. deviation from the least-squares plane is $0.031 \AA$. Atom N3 is significantly displaced from the mean plane by 0.204 (3) A. The dihedral angle between the aromatic ring and the $\mathrm{C} 5 / \mathrm{N} 3 / \mathrm{C} 9$ group is $74.81(10)^{\circ}$. The major conformational difference in the cyclopropanecarbonyl 'arms' of (I) concerns the amide carbonyl ($\mathrm{C} 5=\mathrm{O} 1$ and $\mathrm{C} 9=\mathrm{O} 2$) groups. The first of these is close to being eclipsed with respect to the N3-C3 bond, whereas the second is almost anti with respect to the same pair of atoms (Table 1). The cyclopropyl rings [mean $\mathrm{C}-\mathrm{C}=1.504$ (3) \AA; mean $\mathrm{C}-\mathrm{C}-\mathrm{C}=60.0(2)^{\circ}$] are unexceptional.

As well as van der Waals forces, the crystal packing in (I) appears to be influenced by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2). The first of these bonds involves the atoms $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{ii}}$ (see Table 2 for symmetry code), i.e. the aromatic H atom and an amide carbonyl O -atom acceptor. These bonds help stabilize the [001] stacks of (I) and are generated by c-glide symmetry. The second, with a near-linear $\mathrm{C} 7-\mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{i}}$ bond angle of 173° and a very short $\mathrm{H} \cdots \mathrm{O}$ separation of $2.35 \AA$,

Received 20 May 2004
Accepted 24 May 2004
Online 29 May 2004

Figure 1

View of (I) (50\% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radii.

Figure 2

Dimerization of molecules of (I) via the $\mathrm{C} 7-\mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{i}}$ bond (symmetry code as in Table 2), with 50% probability displacement ellipsoids; all H atoms, except H 4 , have been omitted for clarity.
involves a cyclopropyl H atom and the other amide carbonyl O atom as the acceptor species, the acceptor generated by inversion symmetry (Fig. 2), which results in dimers of (I). Allen et al. (1996) have shown that $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds from cyclopropyl methylene groups are enhanced because strain inherent in the C 3 ring tends to increase the acidity of the CH moieties involved, although the example here appears to be a particularly strong bond.

There may be $\pi-\pi$ stacking effects involving the pyrimidine rings $(\mathrm{C} 1-\mathrm{C} 4 / \mathrm{N} 1 / \mathrm{N} 2$, with centroid $C g)$ in (I). The $C g \cdots C g^{\text {iii }}$ [symmetry code: (iii) $x, \frac{3}{2}-y,-\frac{1}{2}+z$; i.e. the c-glide] separation is 3.7160 (12) \AA, but the centroids are laterally displaced by the large value of $1.87 \AA$, suggesting that this is a very weak interaction.

In combination, these effects result (Fig. 3) in stacks of molecules of (I) propagating along [001]. The stacks are crosslinked along [010] by the proposed $\mathrm{C} 7-\mathrm{H} 4 \cdots \mathrm{O} 2^{i}$ (Table 2) bonds, whereas along [100] only van der Waals

Figure 3
The packing in (I), viewed down [001], with $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions indicated by dashed lines (50% probability displacement ellipsoids); all H atoms, except H1 and H4, have been omitted for clarity.
interactions hold the adjacent stacks together. In this direction, the $\mathrm{N} 1 \cdots \mathrm{Cl} 2^{\text {iv }}$ [symmetry code (iv) $x-1, y, z$] contact of 3.252 (2) \AA is slightly less than the van der Waals radius sum of $3.30 \AA$ for these species (Spek, 2003).

Experimental

To prepare (I), 4,6-dichloro-5-aminopyrimidine ($0.412 \mathrm{~g}, 2.512 \mathrm{mmol}$) was placed in a twin-necked flask and was stirred in dry dichloromethane (35 ml) under a nitrogen atmosphere. The reaction mixture was cooled to 273 K , whereupon Hünig's base ($7.54 \mathrm{mmol}, 1.30 \mathrm{ml}$) was added, and the reaction was stirred for approximately 10 min . Cyclopropane carbonyl chloride ($7.54 \mathrm{mmol}, 0.68 \mathrm{ml}$) was then added, and the reaction was warmed to room temperature and stirred for 24 h . The progress of the reaction was monitored using thin-layer chromatography (TLC, solvent dichloromethane), showing the product with an R_{F} of 0.19 The reaction mixture was then washed with saturated brine $(3 \times 20 \mathrm{ml})$ and dried with magnesium sulfate, and the solvent was removed at reduced pressure. The resultant organic liquor was purified using flash chromatography (solvent 3:0.1 chloroform/methanol). Overlap of the starting material with the product required the use of a different solvent system (2:2:0.1 dichloromethane/hexane/methanol) to further purify the product ($R_{\mathrm{F}}=$ 0.17). Vapour diffusion crystallization was used to obtain white crystals of (I); dichloromethane was used as the solvent and hexane was used as the precipitant. The yield obtained was $0.063 \mathrm{~g}(8.4 \%)$. M.p. $406-409 \mathrm{~K} . ~ F T-I R ~\left(K B r, ~ \mathrm{~cm}^{-1}\right): \nu_{\max } 3062(w, \mathrm{CH}$, cyclopropane $)$, 1697, $1713(\mathrm{C}=\mathrm{O}$, carbonyl), 1517, $1413(s, \mathrm{C}=\mathrm{N}$, conjugated, cyclic, pyrimidine), 1541 ($m, \mathrm{C}-\mathrm{N}$, tertiary amine), 1174 (s, pyrimidine- NR_{2}), 813 (s, pyrimidine- Cl); ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): \delta$ $0.96(4 H, d d d), 1.20(4 H, d d d), 2.01(2 H, t t), 8.76(1 H, s) ;{ }^{13} \mathrm{C}$
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.2,15.7,131.4,157.3,161.9,174.1$. Elemental analysis data were consistent with the crystallographic results: found: $\mathrm{C} 47.93, \mathrm{H} 3.58, \mathrm{~N} 13.75, \mathrm{Cl} 22.78 \%$; calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 48.02, H 3.69, N 14.00, Cl 23.62\%.

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=300.14$
Monoclinic, $P 2_{\mathrm{f}} / c$
$a=7.6677$ (3) A
$b=26.7366$ (12) \AA
$c=6.6477$ (3) \AA
$\beta=109.065(2)^{\circ}$
$V=1288.08(10) \AA^{3}$
$Z=4$
$D_{x}=1.548 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 14708
\quad reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.51 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
Rod, colourless
$0.50 \times 0.10 \times 0.10 \mathrm{~mm}$
Data collection

Nonius KappaCCD diffractometer
ω and φ scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.787, T_{\text {max }}=0.951$
13247 measured reflections
2937 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.104$
$S=0.98$
2937 reflections
172 parameters

$$
\begin{aligned}
& 1960 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.077 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-34 \rightarrow 34 \\
& l=-8 \rightarrow 8
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

C1-N2	$1.331(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.386(3)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.336(3)$	$\mathrm{C} 3-\mathrm{N} 3$	$1.425(3)$
$\mathrm{C} 2-\mathrm{N} 2$	$1.330(3)$	$\mathrm{C} 4-\mathrm{N} 1$	$1.322(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.381(3)$	$\mathrm{C} 4-\mathrm{Cl} 1$	$1.725(2)$
$\mathrm{C} 2-\mathrm{Cl} 2$	$1.725(2)$		
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{N} 3-\mathrm{C} 3$	$-156.7(2)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 3$	$10.6(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	0.99	2.35	$3.339(3)$	173
$\mathrm{C} 1-\mathrm{H} 1 \cdots 1^{\mathrm{ii}}$	0.95	2.51	$3.203(3)$	130

Symmetry codes: (i) $2-x, 1-y,-z$; (ii) $x, \frac{3}{2}-y, \frac{1}{2}+z$.
All H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-$ $1.00 \AA$) and refined as riding on their carrier atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier atom).

Data collection: COLLECT (Nonius, 1998); cell refinement: $H K L$ SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK, and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

References

Allen, F. H., Lommerse, J. P. M., Hoy, V. J., Howard, J. A. K. \& Desiraju, G. R. (1996). Acta Cryst. B52, 734-745.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brown, D. J. (1994). In The Pyrimidines. New York: Wiley Interscience.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Giovanninetti, G., Garuti, L. \& Cavrini, V. (1980). Farmaco Ed. Sci. 35, 879886.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

